Faculty Research

KCU's esteemed faculty conducts research in a variety of fields from molecular and cellular biology to infectious diseases and biomechanics. Each faculty member has years of experience in research and are available for partnerships and student mentorship.

A. Baki AgbasA. Baki Agbas, MSc, PhD
Associate Professor of Biochemistry

Research Interests: Biomarkers for Neurodegenerative Diseases

Dr. Agbas is working on the development of novel blood-based biomarkers for neurodegenerative diseases such as Alzheimer’s disease and ALS. He recently published new research suggesting a blood platelet screening with a specific antibody has the potential to be a useful tool in diagnosis Alzheimer's disease. He is also assessing the oxaloacetic acid (OAA) treatment for ALS model mouse as part of explorative study for developing treatment for human ALS. 

In addition, Dr. Agbas is exploring the mitochondrial respiration profile in Alzheimer’s disease and ALS as a potential biomarker and Zinc biology in neurodegenerative diseases. He also is exploring a novel mechanism of motor neuron death in a genetic form of ALS in dogs termed canine degenerative myelopathy (DM). This research is continuing in collaboration with University of Missouri-Columbia researchers.

Eugene Konorev, MD, PhDEugene Konorev, MD, PhD
Associate Professor of Pharmacology

Research Interests: Angiogenesis and Cardiovascular Complications of Anticancer Therapy

Utilizing animal models and cell culture, Dr. Konorev’s research is focused on the prevention of cardiac remodeling and progression of heart failure resulting from cancer chemotherapeutics. His team has made important contributions to the field of angiogenesis or the process of formation of new vascular networks in postnatal tissues. He has identified targets for the antiangiogenic effect of doxorubicin and therapeutics to alleviate the antiangiogenic effects.

Robert White, PhDRobert White, PhD
Dean of the College of Biosciences, Professor of Molecular Biology and Medical Genetics

Research Interest: Development of Therapy for Duchenne Muscular Dystrophy (DMD)

Duchenne Muscular Dystrophy (DMD)

Dr. White's lab has been developing a novel therapy to treat Duchenne Muscular Dystrophy (DMD), a lethal muscle degeneration disease commonly found in boys for which there is no cure and is caused by the lack of a muscle protein called dystrophin. Expression of a protein from the eye (retinal dystrophin) in DMD model mice by a transgene cures the mice of their disease which includes severe muscle degeneration accompanied by loss of limb movement and early death. Dr. White's next goal is to move from the lab bench to the bedside of patients. He and his team are identifying the promoter of the retinal dystrophin as a first step in identifying drugs which will induce its expression in muscle. The genetic machinery to make eye dystrophin in muscle is present in many DMD patients but is not used because it is not retinal tissue. Their long range goal is to find drug(s) that induce expression of eye dystrophin from its promoter in muscle as a cure for DMD.

Hematological Diseases Project 1

Iron overloading is a debilitating disease that can occur in a genetic disease (Hereditary Hemochromatosis) or in blood transfusion-dependent diseases such as beta-thalassemia and sickle cell disease. Iron overloading can lead to heart, kidney and pancreatic disease which presents as severe morbidity. The treatment for this disease is using iron-chelating drugs for which patient compliance is low. Hemochromatosis patients are treated by bloodletting as this is the only method by which treatment can remove iron from the body. Dr. White's lab has a mouse mutant that excretes 100x more iron in urine and, when mated to hemochromatosis model mice, can prevent iron overloading. His study is to identify the mechanism and pharmaceutical targets to induce this urinary iron excretion to treat patients with iron overload.

Hematological Diseases Project 2

In a second project, Dr. White's lab is in the process of identifying a novel erythroid transcription factor to treat anemia and potentially identify a novel treatment for leukemia. This work derives from the study an interesting mouse mutant (call Xpna: x-linked pre and neonatal anemia) which lacks the most important erythroid transcription factor called GATA1. The mice with a GATA1 mutation are born anemia but unexpectedly receiver from their anemia. The hypothesis being tested is that there is a compensatory erythroid transcription factor that replaces GATA1 in these mice and also has the likely characteristic that it can prevent leukemia as well.

Barth Wright, PhDBarth Wright, PhD
Associate Professor of Anatomy

Research Interests: Comparative Anatomy and Behavior

Dr. Wright's research examines the various interactions among human and non-human primate food mechanics behavior and morphological and physiological adaptations, particularly craniofacial. These tools and techniques include, but are not limited to, detailed in-field observations of feeding in field tests of food mechanical properties combined with laboratory measures of force transduction using high fidelity 3D imaging and force measurement. His research incorporates a range of tools and techniques, the use of which can prove beneficial to evolutionary biologists and clinicians.

Asma Zaidi, PhDAsma Zaidi, PhD
Professor of Biochemistry

Research Interests: Parkinson’s Disease and Dopamine Neuronal Death

Dr. Zaidi has identified that the plasma membrane Ca2+-ATPase (PMCA) plays a critical role in DA neuron degeneration in Parkinson’s Disease. Utilizing human postmortem tissue, cell culture and mouse models of Parkinson’s Disease, she has shown that aging and exposure to neurotoxins lowers endogenous levels/activity of the PMCA 2 in the substantia nigra, and the inactivation of this calcium transporting enzyme causes selective cell death of dopaminergic neurons in Parkinson’s Disease. This work is focused in translational research as it defines potential sites for pathological failure and therapeutic intervention in Parkinson’s Disease.

Jingsong Zhou, PhDJingsong Zhou, PhD
Professor of Physiology

Research Interests: Muscle Physiology and Neuromuscular Diseases

Teaching expertise: Muscle Physiology, Gastrointestinal Physiology & Membrane Physiology

Dr. Zhou’s research interests focus on the role of skeletal muscle in neuromuscular disease and how the crosstalk between muscle, neuron and other organs contributes to the progression of neuromuscular diseases, such as amyotrophic lateral sclerosis (ALS). Her research team has been developing novel molecular tools and animal models to define the role of Ca2+ signaling and mitochondrial function in health and disease. The mechanisms controlling this signaling represent critical point at which many cellular functions can be modulated. This work is clinically important as it defines potential sites for pathological failure and therapeutic intervention.