Scholarly Activity

  • Research Spotlight

    Students Present Posters at National Conferences

    KCU students travel to Orlando and Seattle to present at AOA/OMED and the Annual Biomedical Research Conference for Minority Students respectively. Read more to learn what topics they will be covering.

      KCU Confocal MicroscopeKCU Offers Contract Services to Broader Life Sciences Community 

    The Kansas City University of Medicine and Biosciences (KCU) is dedicated to advancing scientific knowledge through innovative research. KCU has made substantial investments to further development of the University’s research program and to take advantage of funding opportunities by creating collaborations with other local research organizations.

    As further evidence of these efforts, KCU is now proud to offer core laboratory resources to the broader life sciences community on a contract basis.

    Publications and Presentations

    Faculty Research Interests

    Research is central to our mission at KCU. Learn more about our faculty members and their research interests.

  • Abdul-Baki Agbas, PhD


    Associate Professor of Biochemistry

    Research Interests: Biomarkers for Neurodegenerative Diseases

    Identification of a sensitive and reliable peripheral blood biomarker(s) that are needed for early diagnose and prognosis of neurodegenerative disease(s). Proof of concept for commercialization of IP directed at platelet biomarker in Alzheimer’s disease.

    Pathogenic Mechanisms in ALS

    Dr. Agbas’s team is exploring the relationship with abnormally phosphorylated forms of TDP-43, elevated levels of Zinc and gene mutations (SOD) that cause the aggregation of TDP-43 and cell death. He is collaborating with scientists from the College of Veterinary Medicine at University of Missouri-Columbia to explore novel mechanisms of motor neuron death in a genetic form of ALS in dogs termed canine degenerative myelopathy (DM).

    Eugene Konorev, MD, PhD


    Associate Professor of Pharmacology/Microbiology

    Research Interests: Angiogenesis and Cardiovascular Complications of Anticancer Therapy

    Utilizing animal models and cell culture Dr. Konorev’s research is focused on the prevention of cardiac remodeling and progression of heart failure resulting from cancer chemotherapeutics. His team has made important contributions to the field of angiogenesis, or the process of formation of new vascular networks in postnatal tissues. He has identified targets for the antiangiogenic effect of doxorubicin and therapeutics to alleviate the antiangiogenic effects.

    Norbert Seidler, PhD


    Professor and Chair of Biochemistry

    Research Interests: Structure and Function of GAPDH

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme that possesses diverse functions that are independent of its role in glycolysis. Dr. Seidler is particularly interested in its role in learning and memory. The general decline of GAPDH associated with neuronal function with aging, stochastic chemical and post-translational modifications change with aging suggest an important role of GAPDH function with neuronal systems associated with learning and memory. Dr. Seidler is leading a group of faculty utilizing zebra fish as models for neurodegenerative disorders.

    Robert White, PhD


    Associate Dean of the College of Biosciences, Professor of Biochemistry

    Research Interests: Duchenne Muscular Dystrophy (DMD)

    Identified transgene (Tg) therapy for treatment of mouse model of DMD implicating human tissue-specific retinal dystrophin isoform as novel therapeutic strategy to treat DMD patients. His team is exploring novel pharmacologic targets to induce the activity of the retinal dystrophin promoter in muscles of DMD patients.

    Anemia and Iron Overload Hematologic Disorders

    While GATA1 is considered essential for red blood cell production, Xpna mutant mice (X-linked pre-neonatal anemia) recovers from anemia indicating transcription factor may compensate for the absence of GATA 1. Dr. White’s team is using a variety of strategies to identify the unknown transcription factor.

    Barth Wright, PhD


    Associate Professor of Anatomy

    Research Interests: Comparative Anatomy and Behavior

    Primate Craniofacial Adaptation to food mechanics. His research examines the various interactions among human and non-human primate food mechanics behavior, and morphological and physiological adaptations, particularly craniofacial. These tools and techniques include, but are not limited to: detailed in-field observations of feeding, in field tests of food mechanical properties combined with laboratory measures of force transduction using high fidelity 3D imaging and force measurement. His research incorporates a wide range of tools and techniques the use of which can prove beneficial to evolutionary biologists and clinicians.

    Kristin Wright, PhD


    Associate Professor of Anatomy

    Research Interests: Comparative Anatomy and Behavior

    Relationships among morphological, behavioral and physiological adaptations in wild primates. NSF funded research to study how diet drives behavior of primates, which in turn drives changes in morphology. Uses detailed in-field observations of positional behavior during foraging; in-field kinematic analysis and laboratory based 3D imaging and other morphometric approaches.

    Asma Zaidi, PhD


    Professor of Biochemistry

    Research Interests: Parkinson’s Disease and Dopamine Neuronal Death

    Dr. Zaidi has identified that the plasma membrane Ca2+-ATPase (PMCA) plays a critical role in DA neuron degeneration in PD. Utilizing human postmortem tissue, cell culture and mouse models of PD, she has shown that aging and exposure to neurotoxins lowers endogenous levels/activity of the PMCA 2 in the substantia nigra, and the inactivation of this calcium transporting enzyme causes selective cell death of dopaminergic neurons in PD. This work is focused in translational research as it defines potential sites for pathological failure and therapeutic intervention in PD.

    Jingsong Zhou, PhD

    468Professor of Physiology

    Research Interests:
     Muscle Neuron Crosstalk in ALS

    Her research interests focus on the role of skeletal muscle in neuromuscular disease and how the crosstalk between muscle, neurons and other organs contributes to the progression of neuromuscular diseases, such as amyotrophic lateral sclerosis. Her team developed novel molecular tools and animal models to define the role of Ca2+ signaling and mitochondrial function in health and diseases. The mechanisms controlling this signaling represent critical points at which many cellular phenomena can be modulated. This work is clinically important because it defines potential sites for pathological failure and therapeutic intervention.